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I. INTRODUCTION

Dispersion of missiles can be separated into two principal categories;
(1) cross-range dispersion resulting from lift nonaveraging and (2) up- or
down-range error associated with drag uncertainty and atmospheric variations
such as winds. Winds also contribute to cross-range dispersion. Control
of up- or down-range error by compensating for drag uncertainty (drag
modulation) has been treated previously. It has been shown that very little
energy is required to effect large changes in drag by yaw-moment control
of angle of attack. 2 The missile is controlled in a circular coning motion
in which the drag is a strong function of the coning half-angle (angle of
attack). Changes in drag caused by extraneous sources, as detected by drag
deceleration, can be compensated for by appropriately increasing or

decreasing the angle of attack.

Cross-range dispersion resulting from lift nonaveraging is one of the
greatest contributors to missile impact error. The sources of such dispersion
are quite varied and include launch errors caused by muzzle disturbance,

small mass and configurational asymmetries, 53516, ¥

and asymmetric
boundary-layer transition (in the case of ballistic reentry vehicles). . Itiils
well known that dispersion caused from variation in body-fixed asym-
metries varies approximately inversely with roll rate, Gl and that such dis-
persion can be controlled by maintaining the roll rate at a sufficiently large
steady value (roll control). However, certain forms of disturbance moments
can adversely affect the lift-vector precession rate and produce lift non-

averaging dispersion somewhat independent of the roll rate. 8

In this report, a general method is described for the design of feedback
control to limit cross-range dispersion caused by lift nonaveraging. This
control would complement drag control to limit up- and down-range error;

the resulting two-loop system would control major sources of missile

dispersion.




II. ANALYSIS

A. CONTROL EQUATIONS

Cross-range dispersion resulting from lift nonaveraging can be
described in terms of the complex missile transverse velocity V = v + iw in 2
plane normal to the average flight path. This velocity is defined in terms
of the total angle of attack 8 and lift-vector precession angle y according

fa fEig, ).
ORER Sy
V(t) = V(0) - _r?l‘if Beat (1)
0

where Lgis the lift force derivative and m is the missile mass. If the
ave value of the transverse velocity V(t) is set equal to zero prior to any
nce in ®and U that causes lift nonaveraging, then the cross-range
n resulting from a disturbance is proportional to the magnitude of

serage value of V at sufficiently large time t after the disturbance.

The behavior of the angles © and U is described approximately by the

undamped equations of motion for a slowly rolling (p = const.), axisymmetric

missile

M, M

i ; p

G+(wi-¢2)6=—1—- —k (2)
.. LU M M
ol + 260 :—IZ+—§—Y (3)
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Fig. 1. Transverse velocity
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where M_ and My are aerodynamic pitch and yaw disturbance moments in ;

the wind-referenced axes and M6p and M&y are applied control moments. :

The control problem is to define the moments M6p and M6Y in terms of
appropriate state variables that minimize the net transverse velocity V
resulting from some disturbance. The problem is that of an optimal regulator

with a cost function equal to the magnitude of the integral in Eq. (1Y

It is assumed that the missile is initially untrimmed in a circular
coning motion to permit a sufficient level of drag control by either increasing
or decreasing the angle of attack. 1 Cross-range dispersion is then con-
trolled by minimizing the coupling between angle-of-attack and precession
angle perturbations that cause lift nonaveraging in accordance with Eq. (1).
The equations of motion, Egs. (2) and (3), can be linearized in terms of
small perturbations abc?ut the quasi-steady values 6 = § and ¢ = u»n.i With
8 =89 + 6+ and U = ® + tli+ substituted in Eqgs. (2) and (3) and higher-order
terms neglected (where 8 and ¥, are small perturbations), the resulting

linear control equations can be written

) N

6+—2wn9¢+: i +——--I (4)
. -— e My 6y

TR T e (5)

where the control moments are assumed to be linear functions of the state

variables 8, é+, and \ll+, according to

:':Aerodynamic damping is omitted, and the roll rate is assumed to be small
such that I p /20 =& W

~11-
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.AeﬁL-BeJr-CLIJJr (6)

H'

Méy
T o

- Do, - E6 - FV (7)

It is convenient to nondimensionalize the control equatic s by defining new

variables
059+/6, )\ELJJ+/wn, T=w t (8)

If these variables are subsitituted in Eqgs. (4) through (7), since d/dt = wnd/dT,

and the Laplace transform with respect to T defined by
© =
.«/():1[ ()e ar (9)

is taken, the control equations can be written

sz+bs+a c=-21 e m
=il (10)

N
(2+e)s+d s+f l.mY

where the nondimensional feedbacks a, b, ¢, ... are defined by
a E'—A: b E"‘B—, C E_C— ) d= . y € = = ’ f = F— (11)
Z w w_6 2 w w_ 0
w n n w n n

A " % 9 1 2
This step is not essential for the analysis, but it facilitates the numerical
evaluation described later,

ol2e




and the nondimensional transformed disturbance moments are

1
m_=

1
M), m ET'/'(M ) (12)
p wiél p ¥ & 81 L

The transformed nondimensional control moments, Eqs. (6) and (7), can

similarly be written

m,_ = -[ (a + bs) @ (s) + c\(s)] (13)

ép

m6y=-[ (d + es) @ (s) + f\(s)] (14)

The transverse velocity, Eq. (1), can be written in nondimensional

form with the substitutions 6 = 8(1 + @) and

t :
4»:{ (wn+¢+)dt=_{: (1 +\) dr (15)
which yields
- T
V(t) = V(0) - ifw 6 (1 +a) exp [i (1 + )\)d'r]d*r (16)
o [

where the relation for pitch frequency wi = Lexst/l is used and a characteristic
length £ = I/mxst is defined. The control problem defined by Egs. (10) and
(16) is that of a linear optimal regulator. The optimal linear feedbacks a,

b, ¢, ... that will minimize the cost function, Eq. (16), are to be deter-
mined. It is necessary to include the additional constraint on the cost func-
tion that the control moments remain within acceptable limits to preclude the

trivial case of very large feedbacks by redefining the cost function




o © 2 & 2
I=W,VV¥+ W m dT+Wf m, “dr (17)
1 2 op 30 oy
0

where V' is the complex conjugate of V, mg and mg are the nondimensional
control moments defined by Eqs. (13) and (14), and Wl’ WZ’ and W3 are
suitable weighting functions.

B. SOLUTION FOR LINEAR OPTIMAL CONTROL

The solution to Eq. (10) for a(s) and \(s) is of the forim

Nl(s) Nz(s)
a(s) =BT * N(s) = BT (18)
where N (s), N (s), and D(s) are polynomials in s of order depending on the
form of the dlsturbance moments m,p and m and with coefficients containing
the feedbacks a, b, ¢, ... to be determined. The control moment terms in
Eq. (17), in the form of integral-square values, can be readily evaluated

from the results of Eq. (18) in terms of Phillips integrals. 9,10

For example, if the system is third order and the pitch-control

moment m6p’ Eq. (13), has the form

(&
B, = (19)

@©
the integral 13 =f m612)d1' has the value
0

czdd +(c2-2c ,)d,d +c2dd
N 0“3 293 (20}
3 2d0d3(d1d -dd33




Evaluation of the transverse velocity term VV3 is much more difficult
because of the nonlinear coupling between ¢ and \ in Eq. (16). A reasonable

approximation to Eq. (16) can be obtained, however, by writing it in the form

V() = V(0) - it wnéfT £ 1 4] e e gy (21)
0
where
X (r) :fOTMr)dr, A (s) = M) (22)

and the upper limit of the integral in Eq. (21) is taken to be sufficiently large
to include the net change in V(7) resulting from perturbations o (7) and A(T).
Without lossof generality, this uppcr limit can be taken as o, and Eq. (21)

becomes the Fourier transform of the function f(7)
: = [ iT
vV = V(0) - 1twnef f(r) e dT (23)
0
where

ftr) = [1 +at] et (24)

Since @ () and \(7) are, in general, small perturbations, according to their
definitions, Eq. (8), the exponential in Eq. (24) can be expanded to obtain for

f(t) the approximation

fr) = 1 4aln) + ik () + ian @) - g [N @] %+ (25)

-15-
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Equation (23) can be evaulated in terms of the Laplace transform of f(7),

Eq. (9), with s = -i. The constant term in Eq. (25) is the contribution to

V(t) from 6 prior to a disturbance that causes a(r) and \{r). If V(0) in Eq. (23)
is defined as the average value of V(t) prior to a disturbance, both the
constant and V(0) can be dropped, since only the net change in V from the

perturbation is of interest. § Equation (23) can then be written

AV

1]

-it mn5’/'|a(1') +in, (1) +ia(n) N (1) - %[ Xl(T)] i I s

P f e 2
= -ilu}le‘a(s) +i)\—(ss—) + ifl’[a(T))\l(T)] - '2“(/[)‘1 ('r)] i ‘ =i

(26)
where a(s), \(s), and Xl(s) are given by Eqgs. (18) and (22). A first-order

solution consists simply of the first two terms, which, from Eq. (18), can

be written

(27)

TR T
& = oitw e[ - e ]
1st ord ik |- D(-1)

A second-order solution includes, in addition to Eq. (27), the terms involving
the Laplace transform of a product. For the case where a(s) and \(s), given
by Eqs. (18) and (22), consist of m and n first-order poles, respectively,

and no others, the Laplace transforms are given by11

M N, (s,)
1"k
ylemrn,m] = N (s -s) (28)
1 L; D'Zski 1 k
2 n Nz(s.)
7 x )] 21 ﬁﬁ—sﬁ Nls - s)) (29)
J=
-16-




a0

where Sk are roots of D(s) = 0 and sj are roots of Di(s)s sD(s) = 0. Thus,
the approximate solution for V, given by Egs. (26) through (29), is obtained
directly from the s-plane solution of the control equations in the form of

Eqs. (18) and (22). The optimum feedbacks are those values that minimize

the cost function, Eq. (17), according to

91 _ o1
o i e

(o5}

I

20,-8-—(:-:0,... (30)

C. RESPONSE TO IMPULSIVE YAW MOMENT

The method is illustrated with a simple example that is amenable to an

analytical solution. The response to an impulsive yaw moment
My(t) = M6 (t) (31)
is considered such that m_ = M/mnél, from Eq. (12), is a constant and

Mp = O.Jr The solution to Eq. (10) for @(s) and X(s) in the form of Eq. (18)

is

a(s) :—lm—y— (32)

(33)

where

D(s) =s + (b+f)s® +[a+bf+(2+e)2-c)ls+af+d2-c) (34)

ISince the unit impulse function §(t) has units of 1/t, it must be nondimension-
alized by dividing by w prior to taking the Laplace transform defined in Eq.
Eq. (9), which accounts for the form M/mnel rather than M/wg 61 for my.

-17-




The Routh stability criterionlo requires that the feedbacks satisfy the

relations

af +d (2 - ¢c) >0
a+bf+(2+e)(2-c)>0
b+f>0

(b+f)[bf +(2+e)(2-c)] +ab-4d(2-c)>0 (35)

These are satisfied with the feedbacks a, f #0 and b =c =d = e = 0. Optimum
values of these two feedbacks will be found that minimize dispersion in
accordance with our cost function, Eq. (17). The perturbation solution,

Eqgs. (32) through (34), reduces to

Zm m (52+a) 3 2
a(s)=~D—G>§, )\(s):——L]—DT)—-:D(s):s +fs“ + (a+4)s +af (36)
S

and the first-order solution, Eq. (27), is found to be

(ML /D(3-~a)[3+a-ila- 1)f]

AVIst ord ~ S

> (37)
(a- 1% +(a+3)

This expression vanishes for a = 3, independent of f. Hence, to the first-
order approximation, dispersion caused from an impulsive yaw moment can
be eliminated with two simple feedbacks. In a more general case, the
feedbacks would be determined to minimize both the dispersion term VV3
and the control moments in our cost function, Eq. (17), with suitable

weighting of each term. Since the feedback a = 3 eliminates dispersion, to

the first-order approximation, and a nonzero value of the feedback f is

required for stability, the magnitude of f is determined to effect equal

-18-




integral-square values of the control moments in order to illustrate the

method. The control momenfs, Eqgs. (13) and (14), witha =3, b=c =d =

e = 0, and the solution, Eq. (36), can be written

2a my fm (s2 + a)
Mes - “Dila) " "oy D(s) (36)

where D(s) is defined in Eq. (36). The integral-square values of these
moments are given by the 13 integral, Eq. (20), where the coefficients e and
dn are defined for each moment by Eqs. (36) and (38). If the numerators of
Eq. (20) are equated for the two moments (since the denominators are the
same), the nondimensional feedbacks a and f must satisfy the relation f = Va
for equal integral-square values of the control moments. Thus, the optimal
linear first-order values of our two feedbacks for the assumed cost function
area = 3 and f =N3. These values should result in zero dispersion, to the
first-order approximation, and require equal integral-square values of the
control moments. The open-loop dispersion caused by an impulsive yaw
moment M is readily obtained from Eq. (26) and the perturbation solution,
Eqgs. (32) through (34), with all of the feedbacks equal to zero. The first-
order approximation to this dispersion is found from Eq. (37) with a =f =0

to give the simple result

AV M1

op lp Istord el i (39)

=19




III. NUMERICAL EVALUATION

The equations of motion, Eqs. (2) and (3), were integrated numerically
to obtain both the open- and closed-loop responses to an impulsive negative
yaw moment with the simple optimal feedbacks derived above. The results
are compared with first- and second-order analytical approximations to the
dispersion velocity. Angle of attack, precession rate, and transverse
velocity histories are shown in Figs. 2 through 7 for the open- and closed-

loop responses. The inputs and system parameters are as follows:

-
1

20 slug ft2
6.566 ft
40 rad/sec
2 deg

3

N3

e
1]

c =d =e =90
= Mydt = -6.092 ft 1b sec

gc‘mwmle
=}
1l

The feedbacks used in the simulation of Figs. 5 through 7 (a = 3, f = N3) were
determined to give zero net dispersion velocity on the basis of the first-order
approximation, Eq. (37). The closed-loop velocity, computed from a
numerical integration of the nonlinear equations (2) and (3), is shown in

Fig. 7. The feedback control limits the dispersion to approximately 3% of
the open-loop value. The second-order contributions to the net dispersion
velocity, Eq. (26), can be computed from the relations, Eqs. (28) and (29),
for the Laplace transform of a product, and from the control solutions,

Eq. (36). The second-order terms are found to be

= 1—5———‘ (M)2 = 0.0291 ft/s (40)
= wn§ T = 0, ec (

AVop lIp 2nd ord
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Fig. 2. Open-loop angle-of-attack response to impulse
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Fig. 3. Open-loop precession rate response to impulse
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Fig. 4. Open-loop dispersion velocity response to impulse
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Fig. 5. Closed-loop angle-of-attack response to impulse
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A

e ————

AV grd s M)2 (0.0509 - 0.0283i)
clsd lp 2nd ord ~ w B T ) fro st '
- 0.0222 - 0.0123i ft/sec (41)

which should be added to the first-order solutions, Eqgs. (39) and (37), of

_2.00 ft/sec and zero, respectively. The results are summarized in
Table 1, which is a comparison of the open- and closed-loop theoretical

values with those computed from a numerical integration of the nonlinear

equations of motion.

Table 1. Net dispersion velocity in ft/sec

Open Closed
Loop Loop
First-Order Approximation 2.00 0
First- and Second-Order
Approximations 1.97 0.025
Numerical Integration 2.00 0.067




Iv. SYSTEM IMPLEMENTATION

Implementation of a control system to sense the required state |

variables and to generate wind-referenced pitch and yaw control moments

has been discussed in conjunction with drag control systems. ’~ The princi-
pal feature of such systems, which differs from that of more conventional i
aerodynamic control systems, is the requirement to generate aerodynamic 1
control moments in the wind plane, which rotates relative to body-fixed

axes at a rate approximately equal to the difference between the roll rate and

the natural pitch frequency when the vehicle is untrimmed. Because relatively
small control moments are required to correct for aerodynamic disturbances |
that would otherwise cause lift nonaveraging, the power requirements are
small enough that wind-referenced moments can be generated by modulation
of body-fixed control surfaces or reaction jets at the windward-meridian
rotation frequency. The state variables selected for this analysis consist

of the angle of attack, the pitch rate, and the precession rate. Since the

transverse dispersion velocity, Eq. (1), is the integral of the lateral

acceleration, a more appropriate control variable than total angle of attack
is lateral acceleration, which is measured directly from a resolution of

body-fixed lateral accelerometers. The pitch rate § can similarly be

obtained from a resolution of body-fixed lateral rate gyro measurements.

The precession rate is the difference between the roll rate and the windward-
meridian rotation frequency. With the missile untrimmed in a circular coning
motion at a quasi-steady angle of attack ©, a body-fixed lateral accelero-
meter will measure a strong periodic signal at the windward-meridian
rotation frequency. The difference between this signal frequency and the

roll rate is the precession rate. Hence, all required control parameters

can be obtained from conventional strapped-down sensors.

|
|
{
|
|
|

-29-




For control of yaw-moment disturbances only, as discussed in the numerical
example, the only feedbacks required are angle of attack (lateral accelera-
tion) and precession rate. For a small or known roll rate, control could be

achieved with information derived solely from lateral accelerometeis.

- 30-




V. CONCLUSIONS

Cross-range dispersion of spinning missiles resulting from lift
nonaveraging can be controlled by application of wind-referenced pitch and
yaw moments. A linear optimal control is derived that minimizes transverse
dispersion velocity selected as the cost function. An approximation to the
dispersion velocity permits the optimal feedbacks to be obtained directly
from the s-plane solution of linearized control equations by means of
classical techniques. The method also permits closed-form solutions for
the open- and closed-loop system response to simple disturbances. The
control loop, defined to minimize cross-range dispersion, complements

control of up- and down-range error by angle-of-attack control of drag. The

combined two-loop system can limit major sources of missile dispersion.
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NOMENCLATURE

A, B, €, B, E, F feedback gains
a, b, ¢, d, e, f transformed feedback gains, Eq. (11)
cyr Spr Sy dO’ d1, d2 Eq. (19)
I pitch or yaw moment of inertia; cost
function, Eq. (17)
Ix roll moment of inertia
? characteristic length, I/mxst
L lift force
LS lift force derivative
m missile mass
m , m transformed pitch and yaw disturbance
P ¥ moments, (Eq. (12)
me , Mg transformed pitch and yaw control
P y moments, Eqgs. (13) and (14)
Mp’ My pitch and yaw disturbance moments
M6p’ M6y pitch and yaw control moments
P roll rate
s Laplace transform variable
t time
v Y-component of transverse velocity
A% transverse velocity, v + iw
AV net change in average transverse
velocity
w Z.-component of transverse velocity
Wl' WZ’ w weighting constants
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static margin (distance of center of
pressure aft of center of mass)

cross-plane coordinates

6 +/6

unit impulse function

angle of attack (Euler angle)

mean angle of attack

angle of attack perturbation

¢+/wn

Eq. (22)

nondimensional time, wnt
precession angle (Euler angle)
precession rate
precession-rate perturbation

undamped natural pitch frequency
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THE IVAN A. GETTING LABORATORIES

The Laboratory Operations of The Aerospace Corporation is conducting
experimental and theoretical investigations necessary for the evaluation and
application of scientific advances to new military concepts and systems. Ver-
satility and flexibility have been developed to a high degree by the laboratory
personnel in dealing with the many problems encountered in the nation's rapidly
developing space and missile systems. Expertise in the latest scientific devel-
opments is vital to the accomplishment of tasks related to these problems. The
laboratories that contribute to this research are:

Aerophysics Laboratory: Launch and reentry aerodynamics, heat trans-

fer, reentry physics, chemical kinetics, structural mechanics, flight dynamics,
atmospheric pollution, and high-power gas lasers.

Chemistry and Physics Laboratory: Atmospheric reactions and atmos-
pheric optics, chemical reactions in polluted atmospheres, chemical reactions
of excited species in rocket plumes, chemical thermodynamics, plasma and
laser-induced reactions, laser chemistry, propulsion chemistry, space vacuum
and radiation effects on materials, lubrication and surface phenomena, photo-
sensitive materials and sensors, high precision laser ranging, and the appli-
cation of physics and chemistry to problems of law enforcement and biomedicine,

Electronics Research Laboratory: Electromagnetic theory, devices, and
propagation phenomena, including plasma electromagnetics; quantum electronics,
lasers, and electro-optics; communication sciences, applied electronics, semi-
conducting, superconducting, and crystal device physics, optical and acoustical
imaging; atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; metal
matrix composites and new forms of carbon; test and evaluation of graphite
and ceramics in reentry; spacecraft materials and electronic components in
nuclear weapons environment; application of fracture mechanics to stress cor-
rosion and fatigue-induced fractures in structural metals.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radia-
tion from the atmosphere, density and composition of the atmosphere, aurorae
and airglow; magnetospheric physics, cosmic rays, generation and propagation
of plasma waves in the magnetosphere; solar physics, studies of solar magnetic
fields; space astronomy, x-ray astronomy; the effects of nuclear explosions,
magnetic storms, and solar activity on the earth's atmosphere, ionospherc, and
magnetosphere; the effects of optical, electromagnetic, and particulate radia-
tions in space on space systems.
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